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A THEORETICAL STUDY OF THE AERODYNMK% OF SLENDER

CRUCIFORM-WINGARRANGEMENTS AND TEIEIRWAKES

By John R. Spreiter and Alvin H. Sacks

SUMMRY

A theoretical study is made of some cruciform-wing
their wakes by mesns of slender-body theory. The basic
theory are reviewed and equations are developed for the

arrangements.and
ideas of this
pressures, load-

ings, and forces on slender cruciform wings and wing-body combinations.
The rolling-up of the vortex sheet behind a slender c~ciform W@ is
considered at length and a numerical smlysis is carried out using
40 vortices to calculate the wake shape at various distances behind an
equal-span cruciform wing at 45° bank. Analytical expressions sre
developed for the corresponding positions of the rolled-up vortex sheets
using a J-vortex approximation to the wake, and these positions are com-
pared with the positions of the centroids of vorticity resulting from
the numericsl analysis. The agreement is found to be remarkably good
at dd. distsmces behind the wing.

Photographs of the wake as observed in a water tank are presented
for various distemces behind a cruciform wing at 0° and 45° bank. For
45° bank, the distemce behind the wing at which the upper two vortices
pass between the lower two is measured experimentally and is found to
agee we~ with the J-vortex analysis.

The calculation of loads on cruciform tails is considered in some
detail.by the method of reverse flow, and eqyations are developed for the
tail loads in terms
analyses.

The importance
the downwash behind

of the vortex positions calculated in the earlier

INTRODUCTION

of the rolling-up of the vortex sheet in determining
slender wings is now generally recognized and has

been discussed at some length in reference 1. The current use of cruci-
. form wings has caused the missfle designer further concern regarding the

do}mwash field in the vicinity of the tail. Such calculations me gen-
erally considerably more complicated than those for planar wings. However,
since the wings on missiles of this type are generally of low aspect ratio
and the tail lengths are long, it is often assumed that the vortex sheet
shed from each panel of a cruciform wing is completely rolled up into a

—. —_———-—_ _ _.. ..—- ——..-— —— ————.
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single vortex line at the tail position.
paper is to investigate the usefulness of

NACA TN 3528

.
One of the purposes of this
such an approximation at various

distances behind the w5ng. This will be accomplished by comparing the
results of an anslytic study of the behavior of a 4-vortex model with the
results of a numerical computation for a corresponding 40-vortex system
and with observations of expertients conducted in a water tsd.

The calctition of the pressures, loatigs, and forces on,cruciform
wing-body conibinationswithout regardto the wake willbe treated esrly
in the analysis, and a later section will be devoted to the calculation
of the loads on a cruciform tail in the presence of the vortex wske.

PRINCIPAL SYMSOIS

A

a

b

CL

CL’”

CP

9

Cy‘

c

d

dL

dR

E

aspect ratio

body radius

span of equal-s- Cruciform

_I&

@H

L’
&

P-PO
pressure coefficient, ~

Y

WJ

Y’

wing chord

distance behind

distance behind

wing trailing

trailtig edge
at which upper two vortices

distance behhd trailing edge
rolled up

2s0

edge

of Cruciform wing (@ = 45°)
pass betweeq lower two .

at which vortices are essentitiy

elliptic integral of the second ktid

.

“
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F

f

g(x)

K

L

L’

‘1

b

n

1

Po

~

r

SC

sH

EhJ

6

‘o

t

to

U.

U,v,w

X>y>z

incomplete elliptic integral of the first kind

kteral distance between centroids of vgrticity of the two
halves of the vortex wake for @ = 45 (f = Y1’ +Ya’)

difference between T and Ta

complete elliptic integral.of the first khd

force component in the z direction

force component in the z’ direction

length of the airplane

free-stream Mach number

outward normal from surface of airplane

static pressure

free-stream static pressure

PO%2
free-stream dynsmic pressure, ~

or wake

4& + Z2

cross-sectionalarea

plan form area of wing H

plan form area of wing V

10CSJ.semispan of component wing H

maxhrnm value of s

local semispan of component wing V

maximum value of t

free-stresm speed

fluid velocity components in the x,y,z

Cartesian coordinates fixed in the body
sketch (a)

directions

and illustrated in

3

.- . . ..——_ __ . ._ ——— .—z.— ..— -————— ...
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X,y ’,z’ Csrtesian coordinates obtained by rotating the xyz system
o

an angle @ about the x axis as illustrated in sketch (f)

Y1’JZ1’Y

Y.2t>z2’}
y’ andz’ coordinates of vortices 1 and 2 of 4-vortex analysis

force component in the

force component in the

yandz coordinates of

angle of attack in the
in sketch (a)

angle of attack in the
in sketch (f)

y direction

Y’ direction

centroid of vorticity

xyz coordinate system as illustrated

Xy’z’ coordinate system as illustrated

angle of sideslip in the & coordinate systemas illustrated
h sketch (a)

maximum circulation round a mbg panel.

angle framthe positive y axis to a point on fhe airplane
surface, positive counterclockwise,as illustrated in
sketch (c)

curve describing the cross section of the vortex wake in planes
x = Const.

fluid WSS density

curve bounding the cross section of the airplane or
planes x = const. as illustrated in sketch (b)

total velocity potential

angle of bank illustrated in sketch (f)

wake in

perturbation velocity potential satisfying FYandtl-Glauert
eqyation

perturbation velocity potential satisfying ti70-dimensional
Laplace equation in planes x = const.
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-.
Subscripts

5

H component wing lying in the xy plane

TE wing trailing edge

U,z two sides of the wake

v component wing lying in the xz plane

~ RELATIONS

The theory for inviscid compressible flow about slender bodies of
arbitrary cross section has become well formulated in recent years and
is now described in detail in many papers (see ref. 2 or 3 for a resum~).
These methods can be applied to the study of flow about cruciform wings
and wing-body combinations and will be used throughout the present
analysis.

The Coordinate System

Most of the analysis wilJ be
referred to a Cartesiau coordinate
system fixed in the body, as sho~m in
sketch (a). The free-stream direc-
tion may be inclined, small angles
aand~ with the x axis, as pro-
jected onto the xz and xy planes,
respectively.

The Potential

z

: /.. Y
: .-,/

b
-.........-...-.....-.

‘ ..
‘x

A perturbation velocity poteritial
q is introduced related to the total Sketch (a)

velocity potential @ according to

@ =Uo(x - py+a,z)+(p (1)

and it is assumed that the perturbation velocities are sufficiently small
that the equations for compressible flow can be satisfactorily approxi-
mated by the Prandtl-Glauert equation. Thus q is a solution of

(l-~’) ~+~+qzz=o (2)

— —..-—.— .—



6 NACA TN 3528

~ it is assumed, furthermore, that the airplane is sufficiently slender
0

that the longitudinal perturbation velocities and their gradients are
small compared with the lateral perturbation velocities and their gradi-

,,

ents, Ward (ref. 4) has shown that the equation for the perturbation
velocit~potential T in the vicini~ of the airplane is

(3)

for supersonic flow (~ > 1); and Heaslet and Lomax (ref. 5) have shown
that

(4)
.

for subsonic flow (~< 1). U these equations, Z represents the length
of the airplsne amd Sc = S=(X) represents cross-sectionalarea in planes
normal to the x axis. The symbol T= in these eqpations represents
the solution of the two-dimensional Laplace eqgation

(5)

for the specified boundary conditions, and can be written explicitly as

(6)

where a is the ltie bounding the cross-sectional area of the airplane
and its wake in the yz plxme, and n is the surface normal in the yz
plane, as indicated in sketch (b). Thus, the three-dimensional velocity

field induced by slender airplanes flying at
, either subsonic or supersonic speeds is approxi-1
,,. mated in the vicinity of the airplane and the

“L

1 n wake by a velocity field that satisfies.the two-

L------------------~ dimensional Iaplace eqyation and the boundary
conditions in trsmsverse planes plus a longitu-
dinal velocity field that depends on the longi-

Sketch (b) tudinal rate of change of cross-sectionalarea
and is independent of y and z. Consequently, equations (3) and (4) axe

.

often written in the following more abbreviated form

Q =(p2 +g(x) (7) “

———_ .
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which is a general solution of ecymtion (5), but where lamwledge of
equation (2) must be introduced to permit the determination of g(x).
As is apparent from comparison of eqwtion (7) sadeqpations (3) and (4),
the function, g(x) contains all of the dependence on Mach number, but
the only feature of the airplane geometry which enters is the cross-
sectional area. Thus, as shown by Keune (ref.’6) and Heaslet and Lomax
(ref. 7), g(x) for any slender airplane can be thought of as the lhit
for small r = dy2 + Z2 of the difference between ~and92 for abody
of revolution having the ssme Se(x) as the airplane, that is,

[J
1

g(x) =lim -* ~
d~ Uo’ds

=Znr

1

(8)
r+o o d~ J(x-g)’ +( EI&)r2-=ti

for Q<l and

[t

X&~r
U.

g(x) = lim dsc dg

1

Uo MC Zn r
-G.

———
r+ o XJ(x- g)2- (~2-l)r2 2’ ti

(9)

for M. >1. It is indicated
relationship occms for ~ =
at present no explicit formula for computing- T for a body of revolution
in transonic flow.

in references 8 and 9 that a corresponding
1 in transonic theory, although there is

Once q is determined, the pressure canbe calculated directly using
the relationship .

Cp = -~(9x+”@z- my) -*(’?Y’+9Z2)
o

(lo)

The Eaundary Conditions

The boundary conditions reqtie that the gradient of the total veloc-
ity potential O is consistent with the free-stream conditions at infin-
ity, and is zero when evaluated normal to and on the surface of the air-
plane. Consequently, p is a constant, say zero, infinitely far ahead of
and to the side of the airplane and

.. .= —...— . . .——_— .—-. -.—..— .— —— ——. . --- .-—-.
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on the surface of the airplane. m equation (I-1),n‘ represents the
normal to the surface, and nl@2 Y ~d n~ represent the direction cosines

of n’ with respect to the x) YJ ad z sxes, respectively. By the

assumptions basic to slender-airp~e theory, this equation”reducesto

(12)

where ah = n2(b/by)+ n3(b/bz)andis the surface normal in a Y2
plame. Having equation (12) expressing the boundary conditions at the
surface of an arbitrary slender airphne, one can easily write the corre-
sponding rehtions for specific shapes. For example, the boundary con-
dition for a body of revolution is

(%).=‘U4=a‘h e+‘ Cos‘~ (13)

z
1

8

1

--------- Y

Sketch (c)
:
t
, .Y z-.
: -..-’ I
:..-.

D

-...
-... ti~l-..-.. -4 +;

‘......
‘x

where r = a(x) is the body radius
and 19 is measured in the counter-
clockwise direction from the positive
y axis, as shown in sketch (c). The
boundary condition for a thin wing
situated near the xy plane, as shown
in sketch (d), is

o92 . ahz
-uoa+uo~

x
(14)

Z=o

where hz = hz(x~y) is the z ordi-
nate of the wing surface. If the

wing is situated near the xz plane~
as shown in sketch (e), the bounm
condition is

.
Sketch (d)

z z,
.-..Y

I .=- t-:
: .-

pl

hY(x,z)
-.-... :,-.+ .—--——-----... Y‘.

----
x

-t-

Sketch (e)

where hy = hy(x,z) now represents
the y ordinate of the wing surface.

.

.

. .

— — -—
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The above statements (and
permit the determination of q
nonlil%ing airplanes, but only

9

similar ones for other configurations)
for SD points in the vicinity .ofslender
for points forward of all trailing edges

for liftiig airplanes. The &ufficiency h the latter instance-st=
from the fact that the line integral in the definition of 92 must be
carried around the trailing vortex wake and that additional relations are
necessary to determine the location of the wake and the conditions existing
thereon.

The vortex wake is ideslized in wing theory to an infinitely thin
vortex sheet extending do~mstream from the trailing edge of the wing.
The vortex sheet csm be thought of as being composed of vortex lines hav-
ing constant circulation I’,or strength, slong their length. The funda-
mental properties sre that the velocity must be purely tangential on
either side of the wake, and that the pressures are eqyal on opposite
sides of the wake. The first of these properties corresponds to the
statement that bQ/&’ is zero on both sides of the wake, and leads, in
the present approximation, to eqgation (12). Since the direction cosines
n1,n2, and n~ of the normal to the wake are e ual and opposite on the

7two sides of the wake, one concludes that bq2 an is equal and opposite
on the two sides of the wake. These two properties, when canbtied with
the pressure-velocity rebtion of equation (10), lead to the conclusion
that the vortex lines are parallel to the average of the velocity vectors
on opposite sides of the wake, again evaluated to an order consistent
with the remainder of the analysis. b other words, I’orA~ is constant
along lines extending downstream from the trailhg edge according to the
relation

W ax
=—
Uo

(I_6)

where the subscripts u and Z refer to the values on opposite sides of
the wake. It is ‘titerestingto note in closing this discussion that the
inclusion of nonlinear terms in the pressure-velocity relation of slender-
wing theory requires consideration of the deformation and ro~ing-up of
th~ vortex wake, and that the flat wake commonly assumed in linear theory
is inconsistent with the use of eqmtion (10) for the pressure. Additional
discussion OY these points can be found in reference 3.

A Second Coordinate System

h order to take advantage of certain symmetry properties, part of
the results will.be given in terms of a second coordinate system xy’z’.
This coordinate system is related to the m system by such a rotation
about the x axis that the XZ’ plane contains both the x axis and
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the free-stresm direction. With this system, the airplane is banked an
angle @ with respect to the y’ sxis~ and-the free~stresm direction

z’

-.Y’ z“
: /-” , ,Z. .-

%

------ ~ .,”’

x-..,.._J

----
-. x #y‘.d..Y

. ,

5$+’ ‘“~k+’
Sketch (f)

makes an angle CL’ with the x axis
as shown in sket-&h(f). Since u and !3
are small angles, we have the fol.1.o~dng
relations:

This coordinate system will be used
from the to the during the discussion
and for the presentation of the spectiic
results for @ . 45°.

FORCES ON SLENDER CRUCIFORM WINGS .

The relationships outlined in
bodies of arbitrary cross section.

z
1
1 -.Y,.

1 ,. .

: . . .
, >.

Rv

.

5
H

..+
‘.,
-.*.‘.-.

‘x

Sketch

z z

‘+-Y=+’+*’

the preceding section apply to slender
hasmuch as the vortex calculations,

which are the principal subject of this
study, are confined to cases involving
either plane or cruciform arrangements
of thin wings, attention will be
devoted in this section to the deter-
mination of the aerodynamic forces on
f~t-plate wings of zero thiclmess.
(The corresponding results for slender
wing-body combinations me included in
the appendix.) These results supersede
those of reference 10 in ~~hichproper
account is not taken of the nonlinear
terms in the pressure coefficient.
Thus, consider the cruciform wing
illustrated in sketch (g) and designate
the component wing which extends along
the y axis as H smd that which
extends along the z axis as V. Both
components are symmetrical about the
x axis, the plan form of wing H
being given by y = *s(x) and that of
wing V byz =i%(x). Since the
wings have no thickness, g(x) = O, the
flow is unaffected by Mach number, and
q = 92. The solution for this case

.

can be considered to be the sum of the
solutions for the flows about each ,%
component slone as sho~m in sketch (h),
since wing H lies in a plsne of
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symmetry of the perturbation flow ~ about wing V, and wing V lies
in a plane of symmetry of the perturbation flow pa about wing H. The
expression for qa can be found in many sources (e.g., ref. Xl.)and is

Ta —‘WS2. 3r2 + .2 + J(S2 - yz + 22)’ + 4y?z’-u@z (18)

where the sign is positive in the upper half-plane and negative in the
lower half-plane. The expression for ~ is

~=kuwt’+f-.’2 + {(t’ + y’ - ‘=’)2+ 4y’z’+’uopy (19)

where the sign is positive in the left half-plane and negative in the
right half-plane. The perturbation velocity potential for the flow about
the cruciform wing is thus

TIwough application of eqgations (10) and .(18)through (2o), expres-
sions for the differential pressures or loadings on the two component
wings are found to be

()A- 4P dt/dx &$ z/t
—= -
qv

dm+~

The sign convention is such that the loadings

(21)

are positive when they are
associated with forces in the direction-of the positive y and z axes,
and hence with positive lift and side force as indicated by the sub-
scripts on tbe symbol Ap.

Of the two terms tithe loading expressions, the synmetric first
terms contribute to lift and side force and the antisymmetric second

,

—.——. —. . . . -—.— — —— .——. . —
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terms contribute
sketch (i) shows

NACA TN 3528

to rolling moment. To illustrate this point further,
the load distribution on a cruciform wing having trian-

* cGWOnents. The loading on the vertical cmponent is sho~,mby the
two top sketches, and that on the

/

~

horizontal component is sho%m by the
*./:.,,./~/ lower sketches. The sketches on the

left represent the contribution of
the symmetric first terms of eqya-
tion (21); those on the right, the
contribution of the antisymmetric

-w

second terms. As has been pointed

/ out in many discussions of slender-
‘!
;,U,“’+

w

wing theory, eqpation (21) for the
loading applies only to those por-
tions of wings for which ds/dx and
dt/dx are positive. Consequently)

Sketch (i)
the present anslysis will be confined
to wings having their maxhum span

at the trailing edge. The permissible ranges for a and f3 are aJ-so
,,

restricted inasmuch as equation (21) becomes invalid when either the sngle
of pitch or yaw becomes so large that the leading edge rotates beyond the
free-stream Wection and becomes, effectively, a trailing edge. Mathe-
matically, this limit occurs when ]131=ds/dx and when la]= dt/ti. If it
is desired to investigate wings inclined at large angles, consideration
must be given to the influence of the trailing vortices lying outboard of
the sides of the wing.

The total forces on the cruciform wing can be determined by inte-
grating the loading over the entire surface area. Thus, the lift (i.e.,
the totsl force in the direction of the positive z axis) is given by

where so is the

L=
JJ

ApLdx @ = 23tqu-so2 (22)

H

maximum semispsm of ~ H. Likewise, the totsl side
force in the direction of the positive

Y= rr APvdx dz
!JJ’
v

where to is the maximum Semispsllof
expressed in coefficient form, are

.

%=&=@H

y axis is

= -21-rc@to2 (23)

wing v. The same results,

(24)

.

,.

——
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(25)

. It may be noted that these latter integrated results can be obtained
more easily by momentum methods (e.g., refs. 2 and 3) if details of the
loadings are not reqpired. For example, the lift of amy plsne or cruci-
form”wing is given simply by

+s.

L = poUo
J
-sO

where A% refers to the difference
potentisl q on the two sides of the
edge.

The determination of
associated velocity field
tions of classical vortex

(26)

in the values of the perturbation
wing, evaluated at the trailing

WAKE AND DOWNWASH

the shape of the trailing vortex sheet and the
behind a wing customarily involves considera-
laws together with the lmown vorticity distri-

bution at the trailing edge. For slender wings, these relations are all
imbedded in the equations given in the first section of the present
analysis. Thus, since Sc = O behind the wing and ~p~n is eqyal and
opposite on the two sides of the vortex wake, it foflows from eqw--
tions (3), (4), and (6) that the perturbation potential for the flow in
any lateral.plane behind the wing is given by

(27)

A direct consequence of the zero thiclmess of the vortex wake is that the
normal derivative in eqyation (27) is equal and op~site on the two sides
of the wake. This means that the contour integral around the wake indi-
catedby u in eqwtion (27) can be replaced with a line titegml along
only one side A of the vortex sheet. The in.tegrandthen involves not
~, but the difference in potential. @ on the two sides of the wake.
Since, furthermore

Aq=I’ (28)

and

(29)

/

—.—..- -—---— .. -—-— .— .—. . —-.——— —— .—._ — — .————. -.— —— -.
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equation (27) becomes, on performing an integration by parts

since I’ is zero at the lateral extremities of the vortex sheet. The
corresponding relations for the velocity components v and w in the
direction of the positive y and z axes can be found by using equa-
tion (30) in conjunction with equation (l), thus

w=~=Uoa+qz=Uoa. -~ ar ‘-Y1 dX
I

(32)
= (y- y=)2 + (z- Z=)2az 21-(

A

The relation for the path of each vortex line given by eqpation (16)
can be expressed in terms of V and w, thus

CTz)(Y’z)”uo
(33)

where the subscripts u and 7 again refer to the values on the two sides
of the vortex wske.

The yrincipal difficulty in the calculation of v and w stems from
the fact that the shape X and the vorticity distribution ar/aA Of the
wake are not immediately kno~,mat sll stations behind the wing, but only
at the trailing edge. At this station, the circulation distribution can
be determined directly from equations (18) through (20) by setting z = O
for the vortex sheet behind wing H and y = O for that behind wing V
and replacing s and t with so and to (the msximum values for S aud t,
occwxdng at the trailing edge). The resulting e~ressions

r~=A~= 2UOCLJS02 - y2 (34)

(35)

.

.

.



NACA TN 3528 15

indicate that the circulation distribution is elliptic immediately behind
each wing. This case illustrates the fact that the circulation distribu-
tion and span loading are not always proportional. This conclusion’is
immediately ap~ent when it is observed that the circulation distribution
for the present case is symmetric about the x axis, whereas the span
loading is asymmetric, as can be seen by exmnini ng sketch (i). Tf atten-
tion is confined to stitions immediately behind the trailing edge and to
cases where the wing is at very low lift, so that x - ~ and I’ are
sti, it may be assumed for certain purposes that the distortion and
rolling-up of the wake is so slight that they can be disregarded. With
this assumption, the induced flow field behind a lifting wing c& be com-
puted directly. Thus, the perturbation potential for the flow behind the
triangular cruciform wing treated in the preceding section can be obtatied
from equations (18) through (2o) by again substituting so for s ad
to for t, and the associated velocity field can be found therefromby dif-
ferentiation. Although the error iqcurred in the induced velocities by
the use of this assumption can be continually diminished as the lift and
distance from the wing is reduced, the condition of zero force on the
wake is always violated at the edges of the wake. The elimination of
these forces demands that the vortices be free to rolJ_up. Inammch as
these effects beccme of increasing importance as the aspect ratio is
decreased, attention here will be focused more on determining the behavior
of the trailing vortex system than on performing calculations assuming a
simplified wake form.

Shilarity Considerations

The rate at which distortion of the wake progresses with increasing
distance from the wing will first be investigated by means of similarity
considerations. Consider two geometrically similar cruciform wings
traveling at either subsonic or supersonic speeds, but differing in span
and angles of pitch and yaw. It is desired to relate the distances behind
the two wings at which the wake patterns are similar. Let the syoibols
referring to the reference wing be denoted by asterisks and those refer-
ring to the second wing be plain. Inasmuch as a first requirement is that
the vorticity distributions must be similar at the trailing edge, it is
necessary that the ratio of angle of attack to angle of sideslip a/~ be
the same for both w@s. (If the problem is stated in the alternative
manner by specifying the angle of attack a’ and angle of bank @, this
condition corresponds to requiring that both wings have the same angle
of bank.) From equations (31) and (32), it is evident that the perturba-
tion velocity components w and ~z behind the wing are directly propor-
tional to the circulation and inversely proportional to the scale. has-
much as the former is measured by, say, the maximum value of the circula-
tion I’o,and the latter by the semispan so, the ratio of the latersl
induced velocities at corresponding stations behind the w5ngs is eqyal to
the ratio of the circulation loading of the two wings.

---- —-— ..— ___ ______ -— .. . ——— ~——— —.
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(36)

Since the ratio of the longitudinal distances, in terms of wing
semispans, from the trailing
is inversely proportional to
of the free-stream velocity,

d/s.

d*/so*

This relation reduces to the

edge to stations having similar wake pitterns
the ratio of the induced velocities, in terms
we have

Uohy uos#o*
= =

uo*/Ty* uo*So*ro
(37)

following when the circulation function I’n
is repl..acedby the lift L through the titroduction of equation (26) “

or in -ensionless

d/s. POU02S02L*
—= 2 2
d*/so* po*Uo* SO* L

form

where A refers to the aspect
b many cases, it is preferred
the wing chord rather than the

d/c

d/s. A/~
— =—

d*/so* A*/CL*

d*/c*

(38)

(39)

ratio and CL to the lift coefficient.
to express the distance d in terms of
semispm, whence

A/CL so/c
=— —
A*/~* So*/C*

(40)

From this result, it can be concluded that the expression for the distance
required for the trailing vortex sheets to assume any particular configu-
ration is of the form

.

:= ’(a(*) (41)

.

.
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where k is, as yet, an unspecified constant. This forraulais directly
applicable to both the ro~ing-up of the vortex sheets and the relative
motions of the rolled-up vortices. Thus, for instance, one set of values
for k will give the distance reqtied for the vortex sheets to become
rolled up to any given degree as a function of the angle of bank p;
whereas another set of values will.give the distance for the rolled-up
vortices to assume some particular orientation with respect to one another.

The foregoing analysis gives no information regarding the relative
rates of rolling-up of the individual vortex sheets trailing from each
panel of a cruciform wing. H the angle of sideslip f3 is zero and the
angle of attack is different fr~ zero (or the angle of bank @ is zero),
a vortex sheet exists at the trailing edge of only the horizontal wing
and it rolls up in exactly the ssme msaner as it does behind a single
plane wing. If, on the other hand, the angles of attack and sideslip are
equal (or the angle of bank is 45°) sad the cruciform wing is composed of
four identical panels, the vorticity distribution at the trailing edge of
each panel is the same and the wake rolls up into four eqpal vortices at
nearly equal.rates. Other cases are more complicated.

Attention has been called in reference 1 and elsewhere to the value
of k = 0.28 given by Kaden in reference 1.2for the constant h equa-
tion (41) for the distmce required for the vortex sheet trailing from a
plane wing having e~iptic circulation distribution to become “essentially
rolled up.”. Although the accuracy, as well as the precise meaning of
Kaden’s result is impaired by the numerous and somewhat arbitrary assump-
tions introduced in the course of the analysis, the result is useful for
predicting the order of magnitude of the tistsnce involved. The problem
actually attacked by I@den is that of the rolltig up of a vortex sheet
of semi-infinite width, having parabolic circulation distribution. The
result is applied to the case of a vortex sheet of finite width having
elliptic circulation distribution by selecting the strength of the para-
bolic distribution to match the known elliptic distribution at the wing
tip, and assuming that the rolling up of the finite vortex sheet and the
semi-infinite sheet proceed identically.

If the same ideas together with I&den’s result for the plane wing
are applied to the cruciform wing, the distance from the trailing edge
to the station where the vortices sre essentially rolled up is

for the

for the

horizontal.w5ng

vertical wing.

()dRF H
= 0“28 $ ?

and

()dR
A 2to

= 0.28 ~Y ~——
T

v

(42)

(43)
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Numerical Results (20 and 40 Vortices)

A detailed analysis of the form of the vortex system behind lifting
wings can be made on the basis of equations (~) tti~ (33) by reP1-ac@
the continuous sheet of vortices with a finite number of discrete vortices
and determining their positions at each longitudinal station by a step-’by-
step calculation procedure. Such a calculation was carried out long ago
by Westwater (ref. 13) for the plane wing with elliptic circulation dis-
tribution. fi this particular treatment, the vortex sheet was repkced
by 20 vortices of equal strength and the results were presentedby giving,
both numerically and graphictiy, the positions of each of the vortices
at several.different distances behind the wing. These resultsj which of
course apply equally to cruciform wings at zero sideslip, sre suamarized
in graphical formti sketch (j). Although these results are presented
here in terms of body axes, rather thsm wind axes as previously given in

z

?

..118

//

I
—+-

bA

.059.

.’1/ \//l /

.495

/
x

Sketch (j)

included which extend do~m-reference 1, additional reference lines are
stream from the trailing edge in the free-stresm direction. This sketch
clearly iJhstrates how the center of the vortex sheet belihd low-aspect-
ratio wings extends downstream in nearly the direction of the extended
chord plane, while the vortex cores extend downstream in nearly the
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direction of
recently for
by Rogers.

.

the free stream. .Similar calculations have been made
wing-body combinations and are reported in reference-14

A numerical calctitionl has been carried out for the case of a
cruciform whg”having four identical panels at equal angles of attack
and sideslip (~ = 450). b this calculation, the.vortex sheet trailhg
from each of the four panels is replaced by 10 discrete vortices of eqyal
strength distributed in such a fashion that the area under each step of
the approximate circulation distribution is eqti to that under the corre-
sponding portion of the elliptic curve representing the given cticulation
distribution. With the strengths and positions of the vortices thus
determined, the velocity components at the position of each vortex are
computed using equations (3.1.)and (32) and the change h the position of
the vortices with a small increase of the distance from the wing is deter-
mined using equation (33). This process is then repeated using the new
vortex positions. Since the entire trail.hg vortex system is symmetrical
about a line inclined at 45° to the xyz coordinate system, the results
are expressed in terms of the xy’z’ coor&inate“systemdescribed earlier
~tiththe angle of bank @ set equal to 450. With the positions of the
vortices given in this system, it is necessary to specify the coordinates
of only hsJf the vortices, since the”strengths and locations of the
remainder are just those of mirror images about y’ . O; that is, with
the vortices numbered froml through 40as indicated in sketch (k),
vortex 20+i is the .@age of vortex i and the follow5ng relations hold
between the two vortices

“20+i = ‘i’; Y’zo+i = - Yit; r20+i = -ri (44)

z“
Since the force component ti the :
direction of the yr axis, or the I
side force Y’, vanishes with this :

choice of coordinate system, the 30 10
force component in the direction of
the z’ axis, or the lift L’, is
eqyal to the resultant lateral force,
thus --------------------------Y“

L’= ~=~= (45)
3

or, in coefficient form a 20

QI . &=mL (4-6)
Sketch (k)

%The actual computations were done under the supervision of
Mr. Stewart M. Crandsll ‘ofthe Electronic Machine Computing Branch of the
Ames Aeronautical Laboratory.

. . —.——.-—. —— ____ ._._ _ ...-— __ ___ . _ __
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Since it follLows,furthermore,

ar =

we have

from eqgation (17) that

d-= “r&

for cruciform wings of equal span.

The results of the calculations are given in three forms.
abridged illustration of the results is given in sketch (7), a

NACA TN 3328

.
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(47)

(48)
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.

Sketch (2)

.
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complete series of illustrations
listing of the numerical results

is provided in figure 1, tid a complete
is given in table I. h order to facili-

tate the fairing near the plane of symmetry of the curves representing
the vortex wake, the position of the point lying in the plane of syunnetry
was calculated at each downstream station. Jn keeping with the remainder
of the present analysis, the above results are given in terms of body axes.
Additional reference marks are shown on the graphical presentations, how-
ever, to indicate the position of a line in the free-stream direction
passing through the trailing edge of the wing root. Ih sketch (1), this
line is shown as a solid line lighter in weight than the axes. h fig-
ure 1, its position is indicated by a small circle on the z’ axis. As
can be seen from examination of the results, these calculations were
carried forth for distances behind the wing up to approximately an
(A/CL’)(b/c) of unity. The rolling up of the vortex sheets is clearly
evident and has progressed to a substantial extent at the most rearward
station. Attention is called to the fact that this distsnce is much
greater than that indicated by KAden’s formulas for the distance to roll
up and that the rolling up of the vortex sheets proceeds at a much slower
rate than indicated by these relations. The same conclusions foil.o~7from
an examination of the planar case.

A second prominent feature of the vortex wake of cruciform wings at
45° bsak concerns the tendency of the vortices from the upper wing panels
to incline downward toward those frcrmthe lower wing panels, and eventu-
ally to pass between them. Although the present calculations were not
carried on to sufficiently large distances from the wing to display this
phenomenon fully, the results do confirm the conclusions of reference 15
that this “leapfrog” distance is much greater than the distance indicated
by Kaden’s formula for rolling up of the vortex sheets. An @or@t
consequence of the difference in rates is that the full details of the
roll% up need not be considered in the analysis of the slower leapfrog
phenomenon. Thus, if the properties of a continuous vortex system are
to be ascertained by considering the properties of a system comprised of
a finite number of discrete vortices, a great many vortices sre necess~
to trace the course of the rolling up, whereas a satisfactory model for
studying the leapfrog characteristicsmay often be had by using only one
vortex per wing panel.

Analytical Results (4 Vortices)

It is ap~ent from the preceding discussion that a very large
number of discrete vortices must be included to give an adequate repre-
sentation of the vortex system near the wing. At greater distances from
the wing where the vortex sheets are substantially rolled up, it appears
phusible that the analysis can be simplified, while still retaining the
essential features, by assuming that the vortex sheets are fully rolled
up into four vortex lines (one from each wfng panel). This simplification
is analogous to the use of a vortex pair for calculating the induced flow
field at great distances behind a lifting planar wing.

—
z.. ———~ . . ________ _____ __
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b contrast to the case of the plane wing for which the vortex sheet
.

rolls up into two vortex lines that, at ~eat, distance ‘behindthe wing,
sre simply straight lines inclined at a smslllangle from the free-stream
direction, the anal.oguusproblem for cruciform wfngs is necessarily more
complicated. hstead of two rolled-up vortices, there are now four and
their induced effects upon one another are such that the curves described
by the vortex Lines are quite intricate. The simplification introduced
by diminisklng the number of vortices from 40, say, to 4, however, is
particu3a.rlyimportant since it permits the use of analyticalmethods
instead of the numerical procedures described in the preceding sections.

The first step in the development of this analysis is to select the
strengths and locations of the four vortices used to represent the actual
vortex sheet at the wing trailing edge. Since it is assumed that alilof
the vorticity frm each wing panel rolls up into a single vortex, it
appears natural to consider that each vortex is of strength equal to the
circulation around the correspondingwing panel and is situated latersUy,
at the trailing-edge station, at the position of the centroid of vorticity
of the vortex sheet it rephces. It is further assumed that the strength .

of each vortex is constant along its length, but that its lateral position
-es ~tith x in accordance withthe velocities induced by the other
three vortices. Although coincidence of the lateral position of each of

.

the four discrete vortices of the simplified model and the centroid of
vorticity of each of the actual.vortex sheets is assured at.only the
traj~g edge of the wing, it is tacitly assumed that the.two sets of
locations are sufficiently nesr to be interchangeablefor most practical
purposes. The accuracy of this assumption, which has tieady been demon-

2’ strated for planar wings b refer-

1
ence 1, will be discussed at the end
of the present section.

3’ Determination of vortex paths for
45° bank.- k reference 15 an analysis
was carried out in which eq~tions were

+y’metric~=r-~-tassh
developed for the paths of-fow recti-
linear vortices which start in a sym-

sketch (m).2 k that paper, the analysis1
was applied to the calculation of the
paths of four vortices representing the
wake beldnd an equal-span cruciform wing ,
at 45° bank. It is necessary to rein-
vestigate this application, however,
because the vortex positions at thepIl#s
trailing edge were calculated frmn the

Vm span loading, since it was not recog-

Sketch (m)
nized that the circulation distribution .

2The motions of 2n vortices were treated by Grobli (Vierteljahr-
schrift der naturforschenden Gesellschaft in Zurich, vol. 22 (1877),

.

37-81, w9-167) . Ho’krever, his result for the case of interest here is
incorrect.
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and span loading were tiferent. The
part of reference 15 dealing with the

23

present analysis supersedes the
application”to the cruciform wing.

The results will.be given here in terms-~f the body sxes X’rz? defined
earlier. From the analysis of reference 15 it is found that if the 4
vortices are of equal strength, the projection of the path of vortex 1
on the y’z’ plsne is given by (if G < 4)

21’ 4G

[ 1

G (Sk ~xcos (p=
—== E(k,qo)-E(k,q=) +—

)

sin q)ocosq).

f- 8(4-G) &-k=sti2~= &k%i@o

U

where

f=

Yo’ =

Sh=’qlo =

.

YI‘ +y2’ G=

value of y=’ at k=
wing trailing edge

Y.r+a’d
(49)

f

-2

distance behind

‘2-(YO’-32 sti2,= _’2-(’~-92—,
D2n D2

tra~g edge

f2G
‘.2.

4(G+ 4)

+

n

and the subscripts 1 and 2 refer to the vortex numbers indicated in
sketch (m). The symbol a’ represents the angle of attack in the xy’zr

coordinate system and is the angle between the x axis and the free-
stresm direction.

The values of yo’,f, and G are to be determined from the spsnwise
distribution of circulation r. For the’case of an eqgal-span tri~
cruciform wing banked 45°, the I’ distribution is identical on both com-
ponent wings and, as shown in equtions (34) and (35), is elliptic.
Hence, the four vortex lines replacing the vortex sheets are all of equal
strength and must be placed at the corners of a square in the pb.ne of
the trailing edge. T%us the initial values of y=: and Y2’ must be
eqwl and the lateral position of the centroid of vortices 1 and 2 is
givenby the average of their y’ coordinates. That is,

Y17 +Y2’ f
Yet = .—=

2 2 Yo ‘ (x)

.,

.-.— –- —— -—- —- -..— —.— —...- ___ .._ _ .— —_
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.
and therefore G = 2. Furthermore, since the four vortices are to be
placed at the centroids of vortici~ from each of the four equal-s@n
panels, one-csm immediately write, for the elliptic circulation distribu- .

tion and 45” bank,

NOW, since
behind the
direction,

so that

the hpul.se in
Crucflorm wing
one can write

‘Ye’
so

the z’
must be

(50

direction of the four vortices trailing
eqti to the resultant force in the z’

p~ouorof = *POUO%L’

,

I’. .cL’/A= cL’/A _2d7cL’

Uoso f/so @o’/so a A

where S and A are the area and aspect ratio of one component wing.
Thus, all the
so that, upon

(52)

(53)

necessary constants have been obtained for eqpation (49)
evaluation of the required elliptic functions, it becomes

21’ 2

[
—=3 1.4675 -
f

and it is noted that q= increases positively from its initial.value
90 = I-c/2at the @ng t%i.ling edge.

.

In reference 15 it was shown that the path of vortex 2 can be
obtained from that of vortex 1 by the use of the expression for the
relative paths

vi ‘$=‘+(’, -9(2%’-’7
1 -+(’-:)

(55)
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so that (since G = 2) t

\

Similarly, with the use of eqya.tions
reference 15 for distance behind the

f

d ll~f

I

128.=— -

[
@,qo~ -E(k,%)f r. G(16- G2)

(50)

G (sin qocos Cpo

4 - G ~1 - k%n~o -

-1

)Shl q=cos Cpl

&==az

(56)

to (53),the eqression given in

+8
[ 1~ F(k,qo) - F(k,q=) +

(57)

reduces to

(58)

so that the paths of vortices 1 and 2 are completely deftied.by eqya-
tions (5o), (~), (56), and (58) and the paths of vortices 3 and 4 are
found by symmetry. The leapfrog distance, which is defined by the con-
dition zl’ = z21, is obtained by setting q= = YC. The last term in the
bracketed expression above then vanishes and the distance dL can be
expressed, titer evaluation of the necessary elliptic functions, as

dL @ A
—= .—
f 8 ~ 1 (1-.o834) (59)

—.—. —.. .— ..- —.—— -—. ..— ——— -——— — . ..— ———— -.——-
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or

dL dL f 4.664—=— .
b fb

= 2.332 ~= —
CL‘ . ma’

(60)

Note that this
tidependent of

relation has exactly the form of equation (41) and is
pm form.

Comparison with results of kO-vortex calculation.- It is evident
that at very large distances behind the wiug the centroids of the vortic-
ity shed from each panel must lie within the rolled-up vortex cores.
Hence, the problem of determining the positions of the rolled-up vortices
is essentialJ_ythat of determining the positions of the centroids of vor-
ticity at distances greater than the rolling-up distance behind the wing.
If this is to be done by using four vortex lines leav%ng the trailing .
edge at the centroid-of-vorticitypositions, then the assumption must be
made that the positions of the four vortices as determined by equa-
tions (50)~ (%), (56), and (58) coincide with the positions of the cen- .

troids of vorticity at all distances behind the wing. This assumption
has therefore been made in the above analysis. @ order to investigate
the velidity of this assumption for 45° bank, comparisons have been made
at various distamces behind the wing between the vortex positions given.
by the present 4-vortex analysis and the centroid-of-vorticitypositions
obtained from the ~-vortex numerical calculations of the preceding
section. The latter positions vere

~ yi’ri.
Yc’ =

xrl ‘

for the vortex sheet frcnneach whg

calculated according to the relations

,_ xzi’ri
Zc -

xri
(61)

panel, and these positions are tabu-
lated in table II and indicated on the plcrksof figure 1 by the symbol
customarily used for the center-of-gravi~ position. The fact that the
centroid-of-vortici~ positions become indicative of the vortex-core
positions only titer the vortex cores are well developed is clearly
i31ustratedby the centroid-of-vorticitypositions of figure 1. On the.
other hand, the comparison shown in figure 2 of the centroid-of-vorticity
positions for the 4- and the 40-vortex approximations indicates that the
agreement is remarkably good for all distances behind the wing. It can
therefore be concluded that the vortex positions obtained in the present
4-vortex analysis furnish good approximations to the ~sitions of the
vortex cores at distances behind the ming at which the rolling-up process
is essentidl.y completed.

Determination of initial slopes of vortex paths for all bank smgles.-
The analytical method of the present section is restricted to an angle of

.
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bank of 45° inasmuch as a solution was obtained by making use of symmetry
considerations. For other angles of bank, it is doubtful that a closed
analytical solution could be obtained for the paths of even the simple
4-vortex model. It is a simple matter, however, to write-analytical
expressions for the initial slopes of the 4 vortex lines at the wing
trailing edge; and it is possible to tiite corresponding expressions for
the initisl slopes of the paths described by’the centroids of vorticity
of the flat vortex sheets leaving the trailing edge. Ih this way, one
can gain some idea of whether the 4-vortex approximationmight be a good
one for other angles of bank. It will be convenient here to return to
the xyz body axes lying in the planes of the wing psnels. h this
coordinate system it becomes clear that the y and z components of the
slopes of the vortices from opposing panels are equal. Thus, equa-
tions. through (33) reduce for the 4-vortex model to

(%)d=o‘ (%)d=o‘ “ +fi2~o:’:t2,
0

(%),.O=(%)d.o=u--
.

.

vhere the subscripts 1 through 4 refer
z

to the vortices numbered as shown in I

(62)

sketch (n), and I’oHand I’oV refer to
the msximum circulations of the If>+jo
horizontal- and vertical-wing components,
respectively. Since the latter quan-
tities are related to the angle of
attack, and the angle of sideslip 3 -2
according-to L’ J Y

-$sO

I
+s.‘OH ‘w

a=—. p=— (63)
2UOS0’ 2uoto

~ -+to

Sketch (n)

- . -- ——-—-- — –y—.—.. .—.._..- ____ -.—.— ———.. . —
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the expressions of equation (62) cm be rewritten as follows:

(%).=O‘(%9.=0=‘ (-’‘$)

(%)d=o=(g)d<=.(’ -$)

.

(64)

.

.

Determination of initial slopes of centroids of vorticity of the
vortex sheets for all bank angles.- For comparison with the above 4-vortex
ap~roximation, consider now the initial slopes of the paths described by
the centroids of the vortici~ trailing from each panel of the cruciform
wing. hasmuch as the singularities at the edges of the wake contribute
substaritidly to the slopes of these paths, and conditions in the imme-
diate vicinity of such singularities are difficult to investigate directly,
a control-surfacetype of analysis will be used. As will become evident
on reading, the analysis bears many features of resemblance to that
employed in the calculation of forces on the leading edges of tMn wings.
To start, consider that portion of the trailing-vortex system contained
between two parallel planes normal to the x sxis and &X aprt, and
inside an arbitrary cyltidrical surface C having generators parallel to

2

I -. Y: /-
: .-

dx

-..+
....

x

Sketch (o)

the x sxis, as illustrated in sketch (o).
The yandz coordinates of the centroid
of vortici~ of the enclosed portion of
the vortex system are given by

z Yiri z Ziri
ye=—.

zri ‘ ‘c = zri
(65)

where yi ~d zi are the coordinates of
a vortex having strength I’i,and the
summations are extended over all vortices

.
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.

extending through the
slopes of each vortex
through (33), by

Wj, ~iu
—=—

29

p~ ends of the control ‘mrface. Since the
filament are given, according to equations (31)

+ vi
2 Fi &i Wiu + WiZ Gi

—= —. =—
dx 2U0 Uo’ == 2U0 u~

(66)
.

the slopes of the path of the centroid of vorticity are

@c z7J’i &c .qr’i

—=-; z=dx uOzri
(67)

Now, an importemt consequence of the fact that the flow in the vicinity
of the wake is governed by Laplace’s eqpation, that is, by equation (5),
is that the velocities at any station are the same whether the vortices
at that station are free or fixed. This means that

‘ifree = ‘%xed = ‘i ; ‘ifree = ‘iffied = ~ri (68)

lh contrast to the force-free state of the actual tra3Mg-vortex system,
the fixed-vortex system sustains forces given by

dYi = -pofiiridx;

on each vortex filament, or

dy=zdyi=

aL=zdLi=

in total. c~ining equations (67)
relations:

(69)

and (70) yields the following

Wc dL dzc dY
—= . —=.
ax poUoXridx ‘ dx Pouozr-j.ti

(’n)

.—.. .— .-z —.-. — -. - ..- —._—. .— —



30 NACA ml 3528

Hence, the slopes of the lines connecting the centroid-~f-vorticityposi-
.

tions of the free-vortex system can be determined from the forces on the
fixed-vortex system.

The total forces dY and dL on the fixed system can be determined
by apply5ng momentum methods to the control surface shown in sketch (o).
This calculation is simplified by the fact that the pressures s.ndflow of
momentum through the p-e faces exactly counterbalance,leaving only the
contributionsfrom the contour C. Thus

dY—=-
dx J pdz-po

J
V(v dz - w dy)

c c

a—=
dx J

PdY+Po
.J

W(W dy - v dz) 1
c c

(72)

where the integrals are to be taken h the counterclockwise sense and the .
pressure p
tions (lo),

Now, Po, a,
of equation
because the
as fo1201is:

i; related to the velocity components according to equa-
(~), ~d (32), that is

p=po -

=Po -

pouo(qx + @z - my) -!y~y’ +%’)

1

(73)

Uo’(u’ + fF) - ~(v’ + W2)pouoqlx+ ~

and ~ are constamts
(72) when integrated
vortices are fixed.

and contribute nothing to the integral.
around the contour, and TX is zero
Hence, eqyation (72) can be rewritten

dY Po—=—
dx2 J __

[(TF - v’)dz +2vwdy]

c

& Po—=—
J

[(w’ - &)dy - 2VW dz]
dX2 1

c

(74)

Finally, on”substitutionof eqpation (74) into equation (71), we have
the followim rehtions between the slopes of the path of the centroid
of vorticity and the velocity component= v
location of the cylindrical control surface

and w ‘which exist at the
c. .
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W. 1 H (-~ + w=’) ~—=—
dx

-VW dz -t
U.xri 2

c 1

where

The above
initial slopes
the wing panel

ZI’i= -J (Vdy-twdz)

c

(75)

(76)

results will now be applied to the calculation of the
of the path of the centroid of the vorticity trailing from
which extends along the positive y sxis. Ih keepimg

with the notation of sketch (n), this panel will be designated with the
number 2. If the control surface C is selected as shown in sketch (~),
the integrals of equations (75) and (76) H be divided into three parts.

.-..

: :
I

1’

[
a

3 b—-. .-.—-...——= ----—...-. . ... _-

X

Y

c a

‘ 4

*Y

4

Sketch (p) Sketch (q)

The contributions of part a can be written directly, and that of part b
can be evaluated by considering the asymptotic form of the velocities in
the vicinity of the edge of the wake to be the same as that of the veloci-
ties around the edge of a flat plate; that is,

(77)

where p and u are polAr coordinates,,with origin at”.@e”edge of the tie
as indicated in sketch (q), and p is a constant.’ !@&.contribution of
part c is zero because dy. is zero, dz dpproac~s’’~ro, and the

...

,, 0.- < ..-
“.:..-..
-:,..●.

. ----. .. * ...“● J
(. %., ..-,

\ .. ,} . ‘-.‘.-. -.... - ,+ .‘. .TT‘. -..-
.. ., .<..,. .

———— -— .— . ~ , ..’. -—------ . . . ,—--—— —-- _—- .—



NMA TN 352832

velocities
tions, the
behind the

are nonsingular there. Upon ~
slopes of the path of the centroid of
wing are

.

out the necessary opera-
vorticity immediately

dyc2

()

so
1

I

~dr
dx=

-— #Y
d=o ‘#oH o

so

J
:dy+il%-w—

0

1

The velocity components v and w can in turn be expressed in terms of
the circulation distribution at the trailing edge by employing equa-
tions (31) and (32). The circulation distributions on both the horizontal- .
and vertical-wing components are elliptic, accorMng to eqxations (34)
and (35). Hence,

It also follows from

rOH = 2uoaso;

equations (76)

r~= 2uopto (79)

and (77) that

—

u

For cruciform wings
spsm, that is, so =

having horizontal
to, the relations

=-0.599$ ;
dYc2()= d=o

(80)

(81)

and vertical components of ecyxal
of eqwtion (81) reduce to

(82)
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These results also apply to the i@tial slopes of the path of the centroid
of the vorticity trailing from panel 3. The corresponding expressions for
panel 1, and likewise panel 4, can be found by the proper interchange of
quantities and are

@cl .() dzcl

& ‘- ()0.785P ; —
& &O

= 0.599a

d=o
(83)

These results may be compared with the corresponding values for the
initial slopes of the vortex lines of the 4-vortex approximation to the
wake of an equal-span cruciform wing by substituting so = to into the
relations of equation (64).

()ti~ =-0.797$ ;
()

dz=
z 7E-

= o.595a
d=o d=o

(84)

(-)dyz
=-o.595f3 ;

h d=o ()2 ~=o

It can be seen by comparing the results of the

= 0.797U (85)

immediately preceti eaua-
tions that the initial slopes of the individual vortex lfie~ of the- -
h-vortex model are very nearly the same as the initial slopes of the paths
of the centroids of vorticity of the corresponikingportions of the con-
tinuous vortex sheet. This conclusion serves as a first indication that
the 4-vortex model may be as satisfactory for determining the positions
of the rolled-up vortex cores at great distances from the wing for all
angles of bank as was demonstrated for 45° bank in figures 1 and2.

WATER-TANK EXPERIMENTS

Experiments were conducted in a water tank for the purpose of observ-
tig visually the vortex paths calculated in the foregoing analysis. Photo-
graphs were obtained of the wake at various distances behind a cruciform
wing by plunging a model vertically into the water at uniform speed and
photographing the water surface from above with a motig-picture camera.
The traces of the wake were made visible by applying fine aluminum powder
to the wing trailing edges. The models tested were triangular flat-plate
wings of aspect ratio 2.

.

.——. ._ —-——--—
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Abridged series of
(plane wing) and 45° in
are shown for distsmces

NACA TN 3528

*

photographs are presented for angles of bank of 0°
figures 3 and 4, respectively. The latter results
up to the leapfrog distance dT, behind the wing,

and measurements of this distance were obtained by”me&s of a tape which
moved with the model and recorded on the film the distance between the
wing trail~ edge and the water surface. The results of such observa-
tions at various angles of attick are presented in sketch (r) and compared
with the 4-vortex calculation of equation (6o). The agreement is seqn to
be quite satisfactory except possibly at the very high lift coefficients.— — —

[2

—4-Vcdex Cdcubtbn
10 m.(m))

oExperfment(Watertank) /

8

+ o

6

4

2 /
c

I 2.3 4 5

6
Sketch (r)

The lift coefficients for the experi-
mental points were calctited from
equation (48).

Because of the persistence of the
vortex sheets connecting the vortex
cores (see figs. 1 and 3), the k-vortex
approximation may not weld accurate
vortex paths at distances behind the

.

wing greater than about dL since the
sheets may upset the periodic nature of
the predicted paths. The 4-vortex
approximation likewise cannot be expected
to give the vortex core yositions accu-
rately at distances behind the wing at
which the vortex sheets are only par-
tially rolled up since there the posi.
tions of the centroids of vorticity do
not correspond to the vortex cores, as
discussed previously in connection with
figure 1.

LIFT ONA TAIL INA NONUNIFORMDOWNWASHFIELJ)

Once the vortex positions at the tail station are known through
calculations similar to those described in the preceding sections, or by
other means, the associated downwash and sidewash fields and the lift
and side force on the tail can be determined by direct calculation. The
determination of the lateral velocities can be accomplished by substitut-
ing the lmown strengths and positions of the vortices into eqmtions (31)
and (32) and integrating (or summing in the case of a discrete vortex
approximation). 5s problem is exactly the same as the ckssical prob-
lem of determining the incompressibleflow field associated with a dis-
tribution of rectilinear vortices, and several alternative methods are
available for obtaining the solution.

5e determination of the lift and side force on a tail in a non-
uniform dowuwash field of known structure is the remaining
to complete the calculation of such quantities as the lift

task necessary
and center of
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_pressureof a wing-tafl system. Although
often approximated by the introduction of

35

the solution of this problem is
additional assumptions such as

strip theory, etc., the exact linear-theory solution can be obtained by
use of reciprocal theorems. This has already been demonstrated in refer-
ence 16 and elsewhere for the case where the tail is a planar surface of
sufficiently high aspect ratio that the linear pressue-velocity relation
can be used. .Thefollowing discussion wild.be concerned with the deriva-
tion of the corresponding relationship that is consistent with the formula-
tion of slender-body theory summarized in the first section of the present
smalysis for the lift of a low-aspect-ratio cruciform wing having flat-
plate wing pmels. This atiwill be accamplishedby considering certain
properties associated with a second cruciform wing identicsl to the first,
but immersed in a uniform flow field streaming in the opposite direction
to that about the first

z,1

wing, as illustrated in sketch (s). lha~chas

Zt

Winglis
angles of

where &

i

&
.-.-ye

L’

-.-..
“-.. Xt

Sketch (s)

immersed h a nonmifomn fl~w field, the locsl or effective
attack and sideslip ~ and ~ are variable, that is

WI (Tz)=
a=(x,y) = — = a= + —

}

.
Uo Uo

($’y)=
(86)

31(X,Z) =-~= f3=-~
.

and p= represent the geometric angles of attack and sideslip,

ad (Tz), represent the additional lateral velocity components

inducedj’say,by l%e vortex system trailing frmn a wing somewhere upstresm.
W order to express the lift on wing 1 in terms of simple properties of
the flow about wing 2, it is necessary that whg 2 be at zero sideslip,
thus

(87)

. . —. —..— ---—
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The proper reciprocal relation for use with multipl..anarsystems is given ‘ -
in reference 16 aud is

(8!3)

where the area of the integration X extends over both sides of all ving
surfacesj Vn is the component of the perturbation velocity normal to and
directed away from the surface, and the subscripts 1 and 2 refer to condi-
tions on wings 1 and 2. Since, for wings having no thickness, Vn is
equal and opposite on the two sides of its surface~ and is furthermore
proportional to EZ on wing component H and to P on wing component V,
equation (88) can be rewritten as follows:

JJ
Au=&@x dy +

JJ
Au=~@x dz =

JJ
Au&ldx

H v H

Here Au refers to the difference in u on the two sides of any surface
and the subscripts H and V indicate that the integrals are to be carried
over wings H s.ndV, respectively. ~ the present case, simplification
occurs not only because & = const., and P2 = O, but also because it
follows therefrom that Auz = O on wing V. ‘l&s equation (89) reduces to

(90)

Now if the titegral on the left side of equation (90) is rewritten in
terms of ~ and integrated with respect to x, that is,

JJAu@‘JYA2tiw‘f+sO@%!E@
H H -sO

(91)

where the subscript TE refers to the values of AQ, at the trailimz
edge; and if eqm~ion (26) is
of the nonlinear terms in the

L=

recalLed for the lift “~cluding the eff=cts
pressure-velocity relation of eqwtion (10),

(26)
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eqxation (90)

.

/

becomes

L,= ,ouoJ’&2)a.tiw

37

(92)

In many problems &= varies only slowly with x. If it is assumed
that al is actually independent of x, equation (92) can be simplified
in the following manner:

‘l=’o”of+sO’l@Jm*~=’o”o!wO’.(a)m“3)
-s0 LIZ -60

Ihasmuch as wing 2 in reverse flow is composed of flat-plate elaents aud
is at zero sideslip, the circulation distribution at the trailing edge
AT~ is proportional to the span loading 2 and ecym.tion(93) can be

rewritten as

(94)

It is interesting to observe that this expression is identical in form
with that obtained in reference 1.6for planar systems of sufficiently
high aspect ratio that the linear pressure-velocity relation can be used.
It is important to remember, however, that the present application
requires the wing in reverse flow to be at zero sideslip, whereas the
analysis of reference 16 requires the wing in reverse flow to be at the
same angle of sideslip as the wing in forwsrd fluw.

It is evident that equation (~) can be applied in several.different
ways. One can compute the total ti= induced by the vortices at the tail
station, multiply by Z2/&, and integrate by either analytical, numeri-
cal, or graphical means; or one can determine a general formula for the
lift due to a single vortex and superpose the lift contributions of ti
the vortices. The latter method is of particular utility where the 1=
distribution is of a comon form, such as elliptic. This case, which
includes all low-aspect-ratio fla.t-phte wings having plan forms such
that no part of the trailing edge lies forward of the station of maximum
span, has already been treated in reference 16 but will be included here
for the sake of completeness. Thus, consider the problem of determining
the lift on a low-aspect-ratio cruciform wing at zero geometric angle of
attack resulting from the presence of an infinite line vortex of strength
r passing through the point y = q and z = ~ and extending parallel

- - — --———-... . . ———— _____ ——— .—. .——
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to the x sxis as shown in sketch [t). The wing panels 1~ be con-

z,
!
:

‘.
-.

-.,.

% x,

Sketch (t)

the wi& is in fright in the reverse
direction at zero sideslip. Thus,
eqmtion (34) yields for the wing in
reverse flow

The effective angle of attack of the
wing iziforward flow iS

(Tz)= ~ y= -l)
“% . —= -—

Uo Zfluo[(y= -7)2 +g21

(96)

Substitution of equations (95) and (96) into eqwtion (93) or (94) yields
the following fornmla for the lift:

[

L1 =-rpouoso - ~+.

.

(97)

the vicinity of a number of such vortices can beTheltiton awingin
found by superposition. The res~t so calcda.ted applies to the wing
when the geometric angle of attack al is zero. If a= is not zero,
an additional contributionmust be included which is just the lift on
the wing b the absence of all adjacent vortices. For the present class
of plan forms, this contribution ALl can be calculated by direct appli-
cation of equation (22), that is,

% = ITPOU02S02% (98)

The above result maybe contrasted with that of strip theory in which
each section of the wing is assumed to act as though it were in two-
dimensional flow at an angle of attack til. The latter assumption results
in a relation for lift of a wing in a nonuniform flow field which resembles
equation (94); except that the span loading 22/& is replaced with a .

function proportional.to the local chord. basrmch as Z2 is not propor-
tional, in general, to the local chord, it is evident that the use of strip
theory will usually result in error. .
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CONCLUDING REMARKS
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Several facets of the aerodynamics of slender cruciform-wi& and
tail interference problems.have been investigated in the foregoing dis.
cussions. Fornuibs are given for the competition of the loading and
integrated forces on cruciform wings and for the determination of the
lift on a tail in an srbitrary, but known, downwash field. The principal
difficulty in wing-tail interference problems resides in the determina-
tion of the flow field at the tail station and stems from the fact that
the trailing vortex sheet rolls up and deforms very rapidly behind low-
aspect-ratio wings. One can always compute the behavior of the vortex
system within the framework of inviscid theory, but the labor is great
when a sufficient number of vortices is used to give adeqyate repre-
sentation of.the actusl vortex sheets. h the present study, results
are given of a calculation using ~ vortices, but even this number proves
insufficient to study the nature of the vortex spirals at large distances
behind the wing. On the other hand, the calculations show that at suf-
ficient distances from the wing most of the vorticity from each whg panel
is concentrated within a single restricted region, and these results bear
out the assumption often made that the vortex system can be represented
by a much simpler model having only four vortices. If each vortex is
assigned a strength equal to the total circulation around the associated
wing panel, and is located, at the trailing edge, at the latersl position
of the centroid of the vorticity it represents, it is shown that the
lateral positions of the four vortices change with distance in such a
manner that they are in close accord with the positions of the centroids
of vorticity of the actual vortex system at all distances from the wing.
Consequently, the lateral position of each of the four vortices is in
reasonably good agreement with the lateral pos’itionof the corresponding -
vortex core at large distances from the wing, in spite of the fact that
the 4-vortex model is clearly inadequate”for representing the details of
the flow at small distances from the wing.

Several.aspects of the analysis of the behavior of vortex wakes
remain to be investigated in future studies. In the first place, both
the numerical study of the ~-vortex model and the analytical study of
the 4-vortex model are confined to the case of 45° bank. Although the
numerical.method can be used for other bank mgles and, of course, for
simpler models, it does not appear possible to extend the present analy-ti-
cal method to other bank angles. The numerical method is S1OV and cum-
bersome, however, and there is need for other more rapid ways for calcu-
lating the form of the vortex system at the tail station. Also needed
is a method for estimating the form of the vortex system in the interme-
diate stages of rolling up. In this range, only a part of the vorticity
can logically be assumed rolled up into the vortex cores, the remainder
being in the relatively undeformed sheet. A related problem exists even
at great distsmces behind the wing where nearly all.of the vorticity is
concentrated in the vortex cores. Replacement of the vortex cores having
finite lateral extent with line vortices of zero diameter leads to very

——______
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large errors in the induced velocities at points in the immediate vicinity
of the vortices. Inasmuch as the ener~ method used for planar wings and
described in reference 1 camnot be applied directly to cases involving
banked cruciform wings, there exists a need for a method for estimating
the size and velocity distribution of the vortex cores so that a correc-
tion can be applied to the 4-vortex results. This need is diminished
somewhat by the fact that, in many cases, the forces on the tail are not
affected by the finite size of the vortex cores. This situation prevails
whenever the vortex cores do not touch the tail surfaces.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Oct. 25, 1955
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AITENDIX A

FORCES ON SLENDER PLANE- AND CRUCIFORM-

WING AND BODY COMKUXATIONS

Formulas are presented in the text of this report for the pressures
and integrated forces on slender cruciform wings. These results axe
obtained following the procedures of reference 10, but differ in that
the effects of nonlinesr terms in the pressure-velocity relation are now
properly accounted for. Inasmuch as the inclusion of these terms also
alters the pressures on cruciform-wing-bodycombinations, and the cor-
rected formulas have not been given elsewhere, they wilJ be given briefly
in this appendix.

The precise problem to be discussed is that of determining the load
distribution and aerodynamic properties of slender cruciform-wing and
body combinations inclined at small angles of pitch, a, and yaw, ~. The
wing-body combination is considered to consist of a slender body of revo-
lution and flat, pointed, low-aspect-ratio wings extending along the
continuation of the horizontal and vertical meridian planes of the body
as sho~m in sketch (a). The component wings are designated wing H and
w4g V, as in the case of the wing done discussed in the teti. The
plainform of wing H is given by y = *s(x) and that of wing V by
z = *t(x). The radius of the body is, in general, a function of x and
is designated by r =~ = a(x). The analysis is confined further
to wing-body combinations having wings whose edges are leading edges
everywhere upstream from the base section. To extend the solutions to
other configurations,further consideration must be given to the influence
of the vortex wake extending downstream from the trailing edge of the
wing. A brief discussion of this problem can be found in reference 17.

As described in the text, the perturbation velocity potential p
is related to the total velocity potential according to equation (l),
and satisfies the fiandtl-Glauert ecpation given in equation (2). The
general solution for slender bodies of arbitrsry cross section is given
in eqwtions (3) through (6). For the present cruciform-wing and body
combination, the solution must satisfy the boundary conditions given by
equation (13) on the surface of the body of revolution and by eqya-
tions (14) and (15) on the horizontal and vertical wings. Inasmch as
attention is cotitied to wings of zero thiclmess, the boundary conditions
on the wing simplify somewhat because h is zero. Once, p is determined
in this way, the pressure can be calculated directly by using the rela-
tionship given in equation (10).

-.. —-—..—.-.. —.— —— — ———-— ————.— .— —- -. -———. -.— ———-—
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Following equation (7),
wing-body combination can be
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&e solution for 9 in the vicinity of the
written as

where Qz represents the solution of the two-dimensionalLaplace equa-
tion for the”specified boundary conditions and g(x) is a function of x
alone definedby equations (3) and (4), or explicitlyby eqpations (8)
and (9). The function q= is independent of Mach number, all of the
imfluence being confined to the function g(x). As in the case of the
wing alonej p2 can be divided into components each representing 92
for a simpler problem. These components are illustrated schematically
in sketch (Al). Component Ta represents the potential for two-

c++y=c&3-y++---y+4 &y_ ;

Sketch (Al)

dimensional incompressibleflow about the wing-body cross section under-
going uniform translation in the direction of the negative z axis,
and iS

,a=+{[-(l+$) ‘Cos2’+‘2(!‘al+[r’(’ -%)2+
( $- 2s2(1+9@+3&c0’2er2T2-uo4a4cos220+s4 1+

(A2) .

where the si~ is positive in the upper W-plane O<e<fi andnega-
tive in the lower half-plane m < f3< 2x. The expression for ~ is

%=* ~{[@+%’)%cos2, +~@+~)]+[r4@-~~+ .

4a4c0s22e +t 4(l+~~+a2(l+&)(l+*)r2c0s20~’2J’2+ uofW-
(A3)

—-
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where the sign is positive in the left hals?-plake fi/2< 19< 3fi/2 and
negative in the right half-plane (- m/2 < e < n/2). Component qc
represents the potential for two-tiensional incompressibleflow asso-
ciated with a source situated at the origin and is

where r =-. The perturbation velocity potential,
field about a cruciform-wing-bodycombination inclined in
yaT7is

43

(A4)

for the flow
both pitch and

9=9a+~+9c+g(x) (A5)

Through application of the above equations to the pressure-velocity
relationship of ecy.w,tion(10), the following expressions are found for
the lifting differential pressures (lower minus upper) on the horizontal
wing and body

(1APLT

(A7)

-.——--.-——.-——.—— .—e-.. _ __. ... . ——
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Similarly, the lateral differential pressure (port minus starboard) on
the vertical wing and body are given by

4-UP( ):1+

F3%GWN+5+(’+9 “8)

(xi) -4’[H++W$+’-’9]—.
‘B

]- +

The total lift and side force exerted on

)~2 2
— +4
S2

(’9)

a complete cruciform-wing
and body combination can be determined by integrat~ the loading over
the entire surface area. It is often convenient to carry out the inte-
gration by first evaluating the lift and side force on one spanvise strip
and then integrating these elemental forces over the length of the wing-
body cotiination, thus
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(JJdY ‘to A%

,[ (
~dz =-2@.& 1-

a2 a’
z-= ~+~ )1

(Au)
-t.

and

(AH)

where the subscripts o and Z in the inte~ted results refer to the
values of the bracketed quantities at x = O and x = Z, respectively.
If the wing-body combination is yointed at the nose, the bracketed qun-
tities vanish at x = O, and the expressions for lift and side force
reduce to

L

[( )1
-=21’ca 52 l-~+<
~ s’

z

Y—=
[ ( )1

-21@ t2 1-=+2
~ t2 t* z

(A14)

(A15)

The above expressions for the loadings and forces indicate that
there is a complete correspondence of the expressions for lift and side
force, and that the lift is independent of the angle of yaw and the side
force is independent of the angle of attack. ksmuch as the pitching
and yawing moments M and N about an arbitrary moment center X. are
obtained by performing the following integrations

-———- .--.——.-, ..—_________ ___
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~
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(AI.6)

(AJ-7)

.

it is evident that the above statements have corresponding counterparts
for these moments. Although the details”of the calculation wiU. not be
given here, it can be shown further for cruciform-wing-bodycombinations
having identical horizontsJ_-and vertical-wing panels that the resulted
lateral force ~ is independent of the angle of bamk, and that
the total rolling moment is zero for EXL angles of bank.

o

Equations (A14) and (~5) show that the lift and side force on a
slender pointed wing-body combination depend on the geomet~ of only the
base section and not of the plan form. This result is in confotity with
the more general integral.relation of eqpation (26) obtained using momen-
tum methods, but not with the result obtained in reference 10 using the
linesr pressure-velocity relation. The latter analysis (here b.ei.ngsuper-
seded) tidicates that equation (A14) is the proper e~ression for the
lift of a wing-body canbination consisting of a low-aspect-ratio trian-
gularwin.gmounted ona slender potited body that is cylindrical along
the wing root, but not, for instance, for a conical wing-body combination.
The conical configuration is of particular interest because of the exist-
ence of a supersonic conical-flaw solution (ref. 18), and because it has
recently been suggested (e.g., ref. 19) that that result be used to check
the applicability of approximate solutions. Comparison reveals, however,
that the results of reference 18 do not agree with equation (A14), but
check the slender-body results of reference 10. The explanation is that
the l“inearpressure-velocity relation is used in the supersonic conical-
flow solution, and that the latter results agree with those given here if
the effects of the additional terms in the pressure-velocity relation are
included in the analysis.
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!UU3LlIII.- CALCULMXD LATERAL POSITIONS OF CENTROIDS OF VORTICITY OF
40 VORTICES EEEUND A SLFNDIIRCRUCIFORM WING AT 45° RANK

vortex nlmlberB mw
+

190 Ycf
ZC 1

210 y=:
z= 1 --H

0.5147 0.5960
0.8484 -0.2553

0.5104 0.6033
0.8787 -0.22301-

1

3

Yc *
Zc ‘

Yc‘
Zc ‘

0.5551
0.5569

0.5556
-0.5537

0.5560
-0.5505

0.5547
o.56cm

o.5c!&l I o.6d+7
O.m -0.1905II 5 I Yc ‘ I 0.5543 I 0.556L

%’ 0.5631 -0.5475 -1-230 Yc’
Zc’

L7 Yc1
%’

0.5539
0.5662

0.5568
-0.5444

0.5577
-0.53%2 +

250 Yc’
Zc!

270 Yc’
Zc 1 ---H

0.5016 0.01
0.9387 -0.1578

0.4971 0.6136
0.W5 -0.1248I 11 Yc ‘

Zc’

0.5530
0.5724

I
’230 Yc’

I
0.4927 I 0.6180

Zc ‘ 0.9981 -o.cq7 IYc ‘
Zc’

0.5585
-0.5319I 15 0.5522

0.5787

21

27

33

39

47

55

63

71

Yc ‘
Zc ‘

0.5509
0.58%

0.5598
-0.5226

Yc ‘
Zc t

0.5496
0.5973

0.5611
-0.5132

350 Yc‘ I 0.4791 0.6316
%’ 1.0?356 0.c088 IYc ‘

%’
0.5483
0.6067

0.5624
-0.5039

0.5471
0.6160

0.5636
-0.4945

Yc ‘
%’

Yc‘
%’

0.5454
0.6284

0.5653
-0.4820

410 Yc‘ 0.4654 0.6453
%’ 1.1714 0.1115

0.5437
0.6408

Yc ‘
+’

0.5670
-0.4695

0.5687
-0.4570

430 yc’ 0.460.9 :. yu4
%’ 1.1995 .

Yc ‘
Zc t

0.54XI
0.6532

0.5403
0.6657

450 yc 1 0.4562 0.6545
%’ 1.W4 0.1810

470 Yc ‘ 0.4516 0.6591
Zcl 1.2550 0.2160

4$X3 yc ‘ 0.4470 0.6637
%’ 1.2&4 0.2513

Yc t
%’

79 Yc‘ 0.53% 0.5721
Zc 1 0.6781 -o. k317

87 Yc‘ 0.5369 0.5738Zc1
0.6905 -0.4192

95 Yc‘ 0.5352 0.5756
%’ o.7c@9 -0.4066

110 Yc ‘ 0.5320 0.5788z=1 0.7260 -0.3830

130 Yc’ 0.5277 0.5830Zcl 0.7568 -0.3512

150 yet o. 52* 0.5873
Zct 0.7875 -0.3194

510 Yc’ I 0.4424 0.66133
+’ 1.3037 0.2859 I

530

:

Yc ‘
%’

Yc‘
%’

Yc1
%’

0.4378
1.3366

0.6729
0.3226

0.4332
1.3633

0.4286.
1.3898

0.6775
0.3585

570 0.6321
0.3945
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d/b = 0.09 d/b = 0.35

d/b = 0.60 d/b = 0.89

d/b =1.45 d/b =1.80 A-14547

Figure 3.- Photographs of the wake at various distances behind a trian-
X p~e ~ (or c~cifo~lm at @=O) of aspect ratio 2; CL=200.
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d/b = O.11 d/b = 0.94

d/b = 0.33 d/b =1.38

d/b = 0.61 d/b =1.79 A-1656’l

Figure 4.- Photographs of the wake at various distances behind an eqpad.-
sw tr~ cruciform wing of aspect ratio 2; @ = 4’5°,a’ = 17°.
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d/b = 2.24 d/b = 3.65

d/b = 2.83 d/b = 4.26

d/b = 4.8.I. A-16588

Figure 4.- Concluded.
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